WELCOME

Jumat, 03 Januari 2014

Pengertian Turunan Fungsi dan Rumus Turunan



Turunan adalah pengukuran terhadap bagaimana fungsi berubah seiring perubahan nilai input, atau secara umum turunan menunjukkan bagaimana suatu besaran berubah akibat perubahan besaran lainnya. Proses dalam menemukan turunan  disebut diferensiasi.

TURUNAN PERTAMA
Misalnya  y merupakan fungsi dari x atau dapat ditulis juga y=f(x). Turunan dari y terhadap x dinotasikan sebagai berikut:
 

Dengan menngunakan definisi turunan diatas dapat diturunkan beberapa rumus-rumus turunan, yaitu 1. Jika diketahui   
    dimana C dan n konstanta real, maka 

Perhatikan contoh berikut :

 2. Jika diketahui  y=C dan  



Perhatikan contoh berikut :

3. Untuk y=f(x)+g(x) maka 

Perhatikan contoh berikut :
4. Untuk y=f(x).g(x) maka

atau dapat juga kita misalkan f(x)=u dan g(x)=v sehingga rumus turunan u.v=u’v+uv’
contoh :
5.




6. Untuk turunan lain tersaji dalam penjelasan dibawah ini.




TURUNAN KEDUA
Turunan kedua dari y=f(x) terhadap x dinotasikan sebagai berikut


Turunan kedua merupakan turunan yang diperoleh dengan menurunkan kembali turunan pertama. Perhatikan contoh berikut :

Penggunakan untuk turunan kedua ini antara lain untuk :
a. Menentukan gradien garis singgung kurva
Jika diketahui garis g menyinggung kurva y=f(x) pada titik (a,f(a)) sehingga gradien untuk g adalah
Sebagai contoh tentukanlah gradien garis singgung dari kurva y=x²+3x dititik (1,-4) !
Penyelesaian :



Sehingga gradien garis singgung kurva y=x²+3x dititik (1,-4) adalah m=y(1)=2.1+3=5
b. Menentukan apakah interval tersebut naik atau turun
kurva y =f(x) naik jika f ‘ (x) >0  dan  kurva y=f(x) turun jika f ‘ (x) <0. Lalu bagaimana cara menentukan  f ‘ (x) > 0  atau  f ‘ (x) <0 ? kita gunakan garis bilangan dari f ‘ (x). Perhatikan contoh berikut :
Tentukanlah interval naik dan interval turun dari fungsi y=x³+3x²-24x !
Jawab :
y=f(x)=x³+3x²-24x →f ‘ (x)=3x²+6x-24=3(x²+2x-8)=3(x+4)(x-2)


Berdasarkan garis bilangan yang diperoleh diatas :
f ‘ (x) >0 untuk x<-4 dan x>2 yang merupakan interval untuk fungsi naik.
F ‘ (x) <0 untuk -4 < x < 2 yang merupakan interval untuk fungsi turun.
c. Menentukan nilai maksimum dan nilai minimum
Nilai maksimum dan nilai minimum fungsi ini sering disebut juga dengan nilai ekstrim atau nilai stasioner fungsi, yang dapat diperoleh pada f ‘ (x)=0 untuk fungsi y=f(x). Untuk lebih jelasnya perhatikan contoh berikut.
Tentukan nilai ekstrim dari fungsi y=x³-3x²-24x-7 !
Jawab :
y’=3x²-6x-24
nilai ekstrim diperoleh dari y’=o maka
3x²-6x-24 = 0
(x²-2x-8)=0
(x-4)(x+2)=0
x1=4 ; x2=-2


Berdasarkan garis bilangan diatas :
Fungsi maksimum pada x=-2 sehingga nilai balik maksimumnya yaitu :
f(-2)=(-2)³-3(-2)²-24(-2)-7
f(-2)=21
Fungsi minimum pada x=4 sehingga nilai balik minimumnya yaitu :
f(4)=(4)³-3(4)²-24(4)-7
f(4)=-87

Tidak ada komentar:

Posting Komentar